Degenerations for derived categories

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Axiomatic Approach for Degenerations in Triangulated Categories

We generalise Yoshino’s definition of a degeneration of two Cohen Macaulay modules to a definition of degeneration between two objects in a triangulated category. We derive some natural properties for the triangulated category and the degeneration under which the Yoshino-style degeneration is equivalent to the degeneration defined by a specific distinguished triangle analogous to Zwara’s charac...

متن کامل

Derived Categories of Stacks

08MX In this chapter we write about derived categories associated to algebraic stacks. This means in particular derived categories of quasi-coherent sheaves, i.e., we prove analogues of the results on schemes (see Derived Categories of Schemes, Section 1) and algebraic spaces (see Derived Categories of Spaces, Section 1). The results in this chapter are different from those in [LMB00] mainly be...

متن کامل

Derived Categories of Stacks

In this chapter we write about derived categories associated to algebraic stacks. This means in particular derived categories of quasi-coherent sheaves, i.e., we prove analogues of the results on schemes (see Derived Categories of Schemes, Section 1) and algebraic spaces (see Derived Categories of Spaces, Section 1). The results in this chapter are different from those in [LMB00] mainly because...

متن کامل

Derived Categories Part I

3 Derived Categories 11 3.1 Extending Functors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.2 Truncations and Hearts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.3 Bounded Derived Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.4 Plump Subcategories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ....

متن کامل

Derived Categories and Tilting

We review the basic definitions of derived categories and derived functors. We illustrate them on simple but non trivial examples. Then we explain Happel’s theorem which states that each tilting triple yields an equivalence between derived categories. We establish its link with Rickard’s theorem which characterizes derived equivalent algebras. We then examine invariants under derived equivalenc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Pure and Applied Algebra

سال: 2005

ISSN: 0022-4049

DOI: 10.1016/j.jpaa.2004.10.001